

A real-time automation platform

What are we going to present / demonstrate?

We invite you to a special presentation and demonstration of ZIV's TwinGrid Platform, showcasing advanced network automation for HV, MV, and LV levels.

This interactive session will feature real-time simulations, providing valuable insights into how ZIV-TwinGrid improves grid stability and efficiency.

Learning Objectives

- Interconnection of DERs
- ICT infrastructure planning
- Data requirements / Data Quality
- Market design
- Managing network constraints
- IT / OT integration
- Team and staff preparation and upskilling for next stages
- Interaction with 3rd party market participants
- (Aggregators, DSO, DER operators, etc)

Use cases

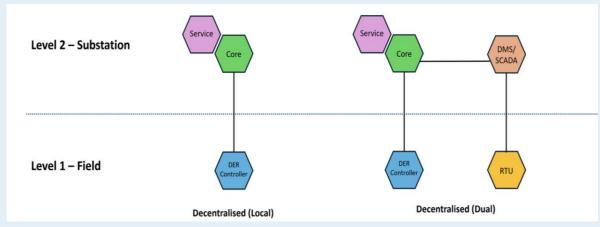
System architecture

Sandbox

We will be showcasing ZIV TwinGrids multiple applications through various use cases that demonstrate how to:

- Optimize the operation of HV/MV & LV networks ensuring improved efficiency and reliability.
- Automate the management of Distributed Energy Resources (DERs), such as generation and demand, for seamless control. Protect networks with advanced constraint management to maintain stability under fluctuating conditions.
- Provide forecasting and prediction services, enabling better decision-making and proactive grid management.
- Enable micro-grid and islanding automation, ensuring continuity in energy supply during disruptions.
- Integrate energy markets, facilitating smoother transactions and participation in the energy ecosystem.
- Aggregate services, combining resources to create more efficient, scalable solutions.
- Implement LV automation to address the growing demands from electric vehicles (EVs), heat pumps, and other new technologies.

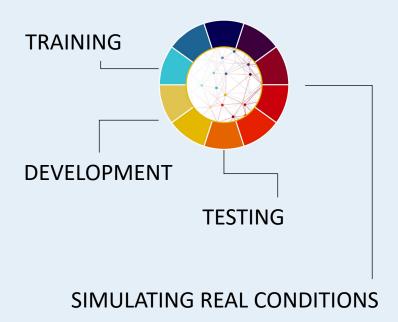
E.g. LV Network ANM Overview Dashboard


Followed by a brief overview of the system architecture

Full solution HW + SW

It is a full solution platform offering robust field hardware, substation and enterprise level software and complete design and integration services that covers Level 1,2,3 & 4

Centralised / Decentralised / Hybrid


A DECENTRALISED architecture is useful for small projects where the automation platform is deployed at the level 2 substation controller.

A CENTRALISED architecture can handle large quantities of data and multiple complex applications. It is deployed centrally at the level 3 data centre in server-based hardware, and optionally at level 2.

Finally, we will experience the Power of a ZIV (**) TwinGrid Sandbox

Learning and testing capabilities

The Sandbox is a collaboration environment designed to offer comprehensive training, development, and testing of the ZIV-TwinGrid platform's capabilities.

With real data

It provides a secure, cloud-hosted space that simulates real-world conditions of production-level DERMS (Distributed Energy Resource Management System) and ANM (Active Network Management) systems. By participating in the Sandbox, you gain access to a dynamic environment where you can conduct indepth evaluations, training sessions, and functional assessments of the platform to enable you to deploy real-world ANM systems more rapidly.

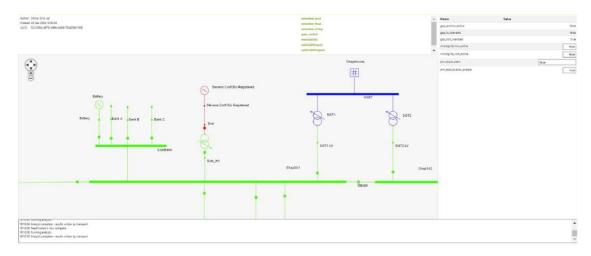
Sandbox

Serves as a duplicate of a production-class DERMS/ANM system

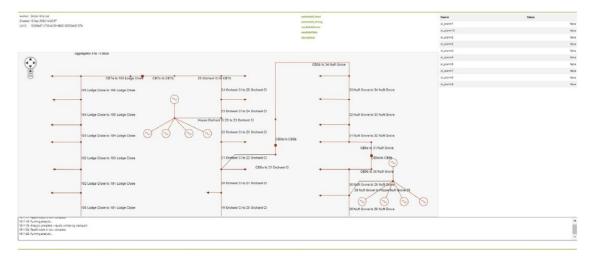
The sandbox includes various modules demonstrating different functionalities within the ANM/DERMS systems. It enables:

- Comprehensive training on ANM/DERMS principles.
- Data quality assessments and ICT infrastructure evaluations.
- Simulation of network performance to test new features and curtailment strategies.
- Design and evaluation of flexibility and energy market applications

Digital Twin
(simulates network behavior simulation & controllable network equipment)


Dynamic Feedback (on network operations in response to control actions and operational changes)

Control Scenarios (creation and testing of different control scenarios to assess algorithm performance)



HV Network Simulation

Mobile App

Sand box

MV Sandbox

LV Sandbox

- Enhanced Network Monitoring
- Dynamic Curtailment
- Virtual Power Plant (VPP)
- LV Network Aggregation
- Future Market and Predictive Management

Thermal Constraint Management

Voltage Management

FLISR

 Prosumer and Flexible Energy Management

Real Time Control

Flexibility Markets

We hope to see you there!

Seats are limited.

RSVP now here

Where: NH Fiera Milan When: October 22nd

Agenda: 4:30 PM Welcome Coffee | 4:45 PM Demonstration & Debate | 6:00 PM Cocktail

- #1 What is the difference between ZIV TwinGrid and SCADA?
- #2 What are the different levels L1, L2, L3 and L4?
- #3 What are the main differences between decentralised and centralised systems? What advantages do each one of them have?
- #4 What is a microservice?
- #5 What impact do heat pumps and LV loads have on LV ANM?
- #6 What are aggregate services?
- #7 Where is the network model obtained from? How do we ensure that the data is mapped correctly?
- #8 What is a Sandbox 1 for?
- #9 What is a Sandbox 2 for?

